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Abstract
Starting with any R-matrix with spectral parameters, and obeying the Yang–
Baxter equation and a unitarity condition, we construct the corresponding
infinite-dimensional quantum group UR in terms of a deformed oscillator
algebra AR . The realization we present is an infinite series, very similar to a
vertex operator. Then, considering the integrable hierarchy naturally associated
withAR, we show thatUR provides its integrals of motion. The construction can
be applied to any infinite-dimensional quantum group, e.g. Yangians or elliptic
quantum groups. Taking as an example the R-matrix of Y (N), the Yangian
based on gl(N), using this construction we recover the nonlinear Schrödinger
equation and its Y (N) symmetry.

PACS numbers: 02.20.Fh, 03.65.Ca, 11.10.Ef

1. Introduction

In this paper, our aim is to present a general construction of infinite-dimensional quantum
groups as explicit integrals of motions of integrable systems. The construction relies only on
the existence of an evaluated R-matrix (with spectral parameters) which obeys the unitarity
condition. Thus, it can be applied to any infinite-dimensional quantum group.

To the R-matrix, one can associate a Zamolodchikov–Faddeev(ZF) algebra AR [1], which
in a Fock space representation provides the asymptotic states of the model. The quantum group
is then constructed as an infinite series in the ZF generators, and is shown to commute with
the Hamiltonian of the hierarchy. Thus, it generates the integrals of motion of the hierarchy.
Moreover, since there is a natural action of the quantum group on the AR generators, its action
on the asymptotic states of the system is easily deduced.
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Taking as an example the R-matrix of Y (N), the Yangian based on gl(N), using this
construction we recover the nonlinear Schrödinger (NLS) equation and its Y (N) symmetry
[2, 3]. It is thus very natural to believe that the other integrable systems found in the literature
can be treated with the present approach.

The paper is organized as follows. In section 2, we introduce the different definitions
and properties that are needed. From these notions, we construct, in section 3, a quantum
group UR from the deformed oscillator algebra AR. We consider in section 4 the hierarchy
associated with AR and show that UR generates integrals of motion. Then, its Fock space
representation is studied in section 5. Section 6 deals with three examples: the NLS equation
with its Yangian symmetry (in the case of an R-matrix with additional spectral parameters),
and Uq(ĝl2) and Aq,p(gl2) (in the case of a multiplicative R-matrix). Finally, we conclude in
section 7.

2. Definitions and first properties

2.1. ZF algebra

We start with an R-matrix satisfying the Yang–Baxter equation with spectral parameters

R12(k1, k2)R13(k1, k3)R23(k2, k3) = R23(k2, k3)R13(k1, k3)R12(k1, k2) (2.1)

and the unitarity condition

R12(k1, k2)R21(k2, k1) = I⊗ I. (2.2)

R is an N2 ×N2 matrix. Here and below, for brevity we denote

R12 ≡ R12(k1, k2) (2.3)

but let us stress that the R-matrix we consider is defined with a spectral parameter. Note
also that both the usual additive and multiplicative cases for the R-matrix, where R(k1, k2)

represents R(k1 − k2) and R(k1/k2) respectively, are included in our formalism.

Definition 2.1 (ZF algebra AR). To each R-matrix obeying equations (2.1) and (2.2), one can
associate a ZF algebra AR [1], with generators ai(k) and a

†
i (k) (i = 1, . . . , N) and exchange

relations

a1a2 = R21a2a1 (2.4)

a
†
1a

†
2 = a

†
2a

†
1R21 (2.5)

a1a
†
2 = a

†
2R12a1 + δ12. (2.6)

We have used the notations

a1 =
N∑

i=1

ai(k1)ei ⊗ I a2 =
N∑

i=1

ai(k2)I⊗ ei

a
†
1 =

N∑
i=1

a
†
i (k1)e

†
i ⊗ I a

†
2 =

N∑
i=1

a
†
i (k2)I⊗ e

†
i

δ12 = δ(k1 − k2)

N∑
i=1

ei ⊗ e
†
i e

†
i = (0, . . . , 0,

i

1, 0, . . . , 0) e
†
i · ej = δij

where · represents the vector scalar product.
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Let us remark that, in the same way that the Yang–Baxter equation ensures the associativity
of the product in AR, the unitarity condition can be interpreted as a consistency condition for
the AR algebra. Indeed, starting with equation (2.4), exchanging the auxiliary spaces 1↔ 2
and the spectral parameters k1 ↔ k2, and multiplying by (R12)

−1, one obtains

a1a2 = (R12)
−1a2a1. (2.7)

Comparing this last relation with equation (2.4), we recover the unitarity condition.
Above and in the following, we loosely write a1 ∈ AR .

Property 2.2 (Adjoint anti-automorphism).

Let † be the operation defined by


AR → AR

a(k) �→ a†(k)

a†(k) �→ a(k)

R12(k1, k2) �→ R21(k2, k1)

(2.8)

and (xy)† = y†x† ∀x, y ∈ AR . Then † is an automorphism of the AR algebra, and we can
identify (a)† ≡ a† and (a†)† ≡ a.

Proof. Direct calculation. For instance

(a1a2)
† = (a2)

†(a1)
† = (a1)

†(a2)
†(R21)

† = (a1)
†(a2)

†R12.

After the exchange 1↔ 2, one recovers equation (2.5)

(a1)
†(a2)

† = (a2)
†(a1)

†R21. (2.9)

The other relations are obtained in the same way, once one remarks (δ21)
† = δ12. �

2.2. Vertex operators

Definition 2.3 (Vertex operators). The vertex operators T ij (k) (i, j = 1, . . . , N) associated
with the algebra AR are defined by T (k) ≡ T ij (k)Eij ∈ AR ⊗ C

N 2
where

T (k∞) = I +
∞∑

n=1

(−1)n

n!
a
†
n...1T

(n)
∞1...na1...n (2.10)

with

a
†
n...1 = a†

αn
(kn) · · · a†

α1
(k1) (2.11)

a1...n = aβ1(k1) · · · aβn
(kn) (2.12)

T
(n)

∞1...n = T
(n)
∞,α1,β1,...,αn,βn

(k∞, k1, . . . , kn) ∈
(
C
⊗N 2)⊗(n+1)

(k∞, k1, . . . , kn). (2.13)

In equation (2.10), there is an implicit summation on the indices α1, β1, . . . , αn, βn = 1, . . . , N

and an integration over the spectral parameters k1, . . . , kn.
For convenience,∞ denotes the auxiliary space associated with T (k∞), and, as for the

R-matrix, we note that T∞ ≡ T∞(k∞).

Let us stress that, in the notation (2.10), the auxiliary spaces 1, . . . , n are ‘internal’ in the sense
that the indices corresponding to these spaces are summed and define scalars, not matrices, in
these spaces. It is only the indices corresponding to the ‘external’ auxiliary space∞ which
refers to the matrix labelling for T. For instance a

†
1T

(1)

∞1a1 represents

a
†
1T

(1)

∞1a1 =
N∑

α,β=1

(
a
†
1T

(1)

∞1a1
)
α,β

Eα,β =
N∑

α,β=1

 N∑
γ,µ=1

a†
γ T

(1)

α,β;γ,µaµ

Eα,β

so that we could also have written a
†
2T

(1)
∞2a2; 1, . . . , n are dummy space indices.
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Remark 1. The series (2.10) is very similar to a normal ordered (in a and a†) exponential

V (k∞) =: exp(−a†Ma): (2.14)

whence the denomination vertex operator is used here to denote it.

Property 2.4 (Sn-covariance of the vertex operators). The vertex operator coefficients T
(n)

∞1...n

are covariant under the action of the permutation group Sn.
More precisely, for σ ∈ Sn, one has

T
(n)

∞σ (1)...σ (n) = R1...n
σ T

(n)
∞1...n

(
R1...n

σ

)−1
(2.15)

where R1...n
σ is the product of R-matrices defined by aσ(1)...σ (n) = R1...n

σ a1...n.

Proof. Starting from the term Xn = a
†
n...1T

(n)

∞1...na1...n and relabelling the auxiliary spaces
i → σ(i) (and also the spectral parameters), one obtains

Xn = a
†
σ (n)...σ (1)T

(n)

∞σ (1)...σ (n)aσ(1)...σ (n). (2.16)

Then, from the exchange properties of a and a† and the property 2.2, one has

a
†
σ (n)...σ (1) = a

†
n...1

(
R1...n

σ

)−1
and aσ(1)...σ (n) = R1...n

σ a1...n (2.17)

which leads to the formula (2.15). �

As an example, if σ is just the transposition i ↔ i + 1, one obtains R1...n
σ = Ri,i+1 and the

formula

T
(n)
∞1...i−1,i+1,i,i+2...n = Ri,i+1T

(n)
∞1...nRi+1,i . (2.18)

Property 2.5. The matrices R1...n
σ , σ ∈ Sn, defined by

aσ(1)...σ (n) = R1...n
σ a1...n (2.19)

obey

Rµ(1)...µ(n)
σ R1...n

µ = R1...n
σoµ so that

(
R1...n

σ

)−1 = Rσ (1)...σ (n)

σ−1 . (2.20)

From any matrix M1...n ∈
(
C

N 2)⊗n
, one can construct a Sn-covariant matrix by

M̃1...n = 1

n!

∑
σ∈Sn

(
R1...n

σ

)−1
Mσ(1)...σ (n)R1...n

σ . (2.21)

Proof. The first formula is proven by direct calculation:

aσ◦µ(1)...σ◦µ(n) = R1...n
σ◦µa1...n = Rµ(1)...µ(n)

σ aµ(1)...µ(n) = Rµ(1)...µ(n)
σ R1...n

µ a1...n. (2.22)

Now, for the last formula, one has (for any µ ∈ Sn)

M̃µ(1)...µ(n) = 1

n!

∑
σ∈Sn

(
Rµ(1)...µ(n)

σ

)−1
Mσ◦µ(1)...σ◦µ(n)Rµ(1)...µ(n)

σ

= 1

n!

∑
σ ′∈Sn

(
Rµ(1)...µ(n)

σ ′◦µ−1

)−1
Mσ ′(1)...σ ′(n)Rµ(1)...µ(n)

σ ′◦µ−1

where in the last expression, we have made the change of variable σ ′ = σ ◦ µ. Now,
using equation (2.20), one obtains Rµ(1)...µ(n)

σ ′◦µ−1 = R1...n
σ ′

(
R1...n

µ

)−1
, and

(
Rµ(1)...µ(n)

σ ′◦µ−1

)−1 =
R1...n

µ

(
R1...n

σ ′
)−1

, so that M̃1...n is Sn-covariant. �

Remark 2. Strictly speaking, one can start with vertex operators which do not obey the
Sn-covariance (2.15), but the relevant part in the vertex operator will be the covariant one, as
given by equation (2.21).
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2.3. Well-bred operators

Definition 2.6 (well-bred operators). An operator L is said to be well-bred2 (on AR) when it
acts on a and a† as

L1a2 = R21a2L1 and L1a
†
2 = a

†
2R12L1. (2.23)

We give a few properties of well-bred operators that will be useful in the following.

Lemma 2.7. Let L be a well-bred operator, then L†(k)L(k) is central in AR .

Proof. One applies the † automorphism to the relations (2.23). We obtain

a
†
2L

†
1 = L

†
1a

†
2R12 and a2L

†
1 = L

†
1R21a

†
2. (2.24)

Then a direct calculation shows that L†(k)L(k) commutes with a and a†. For instance

L
†
1L1a

†
2 = L

†
1a

†
2R12L1 = a

†
2L

†
1L1. �

Lemma 2.8. Let L be a well-bred operator of AR . Then c12 = L−1
1 L−1

2 R12L1L2 is central in
AR. It satisfies c−1

12 = c21.

Proof. Starting with equation (2.23), one obtains

L1L2a3 = R32R31a3L1L2 (2.25)

which can be rewritten (after the exchange 1↔ 2) as

R31R32a3 = L2L1a3L
−1
1 L−1

2 . (2.26)

Then

R12L1L2a3 = R12R32R31a3L1L2 = R31R32R12a3L1L2 = R31R32a3R12L1L2

= L2L1a3L
−1
1 L−1

2 R12L1L2 (2.27)

so that, multiplying by L−1
1 L−1

2 , we obtain

c12a3 = a3c12. (2.28)

Performing a similar calculation with a
†
3, we obtain c12a

†
3 = a

†
3c12.

The last equation is a direct consequence of the unitarity condition. �

3. Construction of well-bred vertex operators

We first give a characterization of well-bred vertex operators.

Lemma 3.1. The vertex operator T is well-bred if and only if T
(n)
∞1...n obeys

T
(1)

∞0 = I− R∞0 and for n � 1 : (3.1)

(n + 1)
{
T

(n)

∞1...n − (R0,n)
−1R∞0T

(n)

∞1...nR0,n

} = n+1∑
i=1

(R0,i−1)
−1T

(n+1)

∞1...n|iR0,i−1

where we have introduced

R0,n =
←−
n∏

a=1

R0a; T (n+1)
∞1...n|i = T

(n+1)
∞1...i−1,0,i...n(i � n) and T

(n+1)
∞1...n|n+1 = T

(n+1)
∞1...n0.

2 We call these operators ‘well-bred’ because they act nicely (on a and a†).
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Proof. We prove the property by a direct calculation. We note T̂∞ = T∞ − I:

a0T̂∞ =
∞∑

n=1

(−1)n

n!

(
a†

nR0na0 + δ0n

)
a
†
n−1...1T

(n)
∞1...na1...n

=
∞∑

n=1

(−1)n

n!

{
a
†
n...1R0n · · ·R01a0T

(n)
∞1...na1...n

+
n∑

i=1

a
†
n...i+1a

†
i−1...1R0n · · ·R0i+1δ0iT

(n)

∞1...na1...n

}
.

Using

δ0iT
(n)

∞1...nai = T
(n)

∞1...i−1,0,i+1...na0 (3.2)

and after a relabelling j → j − 1 for j � i + 1, one obtains

a0T̂∞ =
∞∑

n=1

(−1)n

n!
a
†
n...1R0n · · ·R01a0T

(n)

∞1...na1...n − T
(1)

∞0a0

+
∞∑

n=2

(−1)n

n!

n∑
i=1

a
†
n−1...1R0n−1 · · ·R0iT

(n)
∞1...0i...n−1a1...i−1a0ai...n−1

with

i = n : R0n−1 · · ·R0i ≡ 1, T
(n)

∞1...0i...n−1 ≡ T
(n)

∞1...n−1,0 and a1...i−1a0ai...n−1 ≡ a1...n−1a0

as a notation. Rewriting

a1...i−1a0ai...n−1 = R0i−1 · · ·R01a0a1...n−1 (3.3)

and relabelling n→ n− 1 in the second summation we are led to

a0T̂∞ = −T
(1)
∞0a0 +

∞∑
n=1

(−1)n

n!

{
a
†
n...1R0n · · ·R01a0T

(n)
∞1...na1...n

− 1

n + 1

n+1∑
i=1

a
†
n...1R0n · · ·R0iT

(n+1)
∞1...n|iR0i−1 · · ·R01a0a1...n

}
(3.4)

that is

a0T̂∞=−T
(1)

∞0a0 +
∞∑

n=1

(−1)n

n!
a
†
n...1

{
R0nT

(n)

∞1...n −
1

n+1

n+1∑
i=1

R0nR−1
0,i−1T

(n+1)

∞1...n|iR0,i−1

}
a0a1...n.

(3.5)

On the other hand, one computes

R∞0T̂∞a0 =
∞∑

n=1

(−1)n

n!
a
†
n...1R∞0T

(n)
∞1...nR0na0a1...n. (3.6)

Finally, making equations (3.5) and (3.6) equal, we obtain equations (3.1), after left-
multiplication by R−1

0n .
A similar calculation on T∞a

†
0 = a

†
0R∞0T∞ leads to the same equation. �

Remark 3. If one defines R00 = I (and T
(0)
∞ = I as given by equation (2.10)), equation

T
(1)

∞0 = I− R∞0 just corresponds to n = 0 in equation (3.1).



Vertex operators for quantum groups and application to integrable systems 7935

Property 3.2 (Central generators of AR). The only central generators of AR are constants.

Proof. Let c be a central generator of AR. Since it commutes with a and a†, it also commutes
with the number operator H0 =

∫
dk a†(k)a(k) (see section 4). It is thus of the form

c = c(0) +
∞∑

n=1

(−1)n

n!
a
†
n...1c

(n)
1...na1...n. (3.7)

Demanding ca0 = a0c leads to equations on the elements c
(n)
1...n. These equations are computed

in the same way one computes the equations for T (n). Indeed, one deduces the equations on
c(n) by formally replacing R0∞ by I in equations (3.1). We obtain the relations

c
(1)

1 = 0 (n + 1)
{
c

(n)

1...n − (R0,n)
−1c

(n)

1...nR0,n

}
=

n+1∑
i=1

R−1
0,i−1c

(n+1)

1...n|iR0,i−1 for n � 1.

(3.8)

We prove by induction that c(n) = 0. The case n = 1 is a direct consequence of the equations.
Let us suppose that c(p) = 0 for p � n. Writing the equation (3.8) at level n, and using the
induction, we have

n+1∑
i=1

R−1
0,i−1c

(n+1)
1...n|iR0,i−1 = 0. (3.9)

Using the invariance property 2.4, we can rewrite each term of the sum as

c
(n+1)

1...n|i = c
(n+1)

1...i−1,0,i...n = R0,i−1c
(n+1)

01...nR
−1
0,i−1. (3.10)

Thus, the equation is equivalent to (n + 1)c
(n+1)
01...n = 0 and the induction is proven. �

Theorem 3.3. The vertex operator T is well-bred if and only if T
(n)

∞1...n is defined by the
following inductive expressions:

T
(1)

∞0 = I− R∞0 (3.11)

T
(n+1)
∞01...n =

1

n + 1

n∑
i=0

(
R01...n

pi

)−1
T

(n)
∞2...i,0,i+1,..,nR

01...n
pi

− 1

(n + 1)!

∑
σ∈Sn+1

(
R01...n

pn◦σ
)−1

R∞σ (0)T
(n)

∞σ (1)...σ (n)R
01...n
pn◦σ (3.12)

where T
(n)
∞2...i,0,i+1,..,n for i = 0 stands for T

(n)
∞1...n. pj ∈ Sn+1 is defined by

pj : (0, 1, . . . , j − 1, j, j + 1, . . . , n)→ (1, 2, . . . , j, 0, j + 1, . . . , n), 1 � j � n

p0 = id. (3.13)

We note that Rij represents Rij (ki, kj ).

Proof. We start with lemma 3.1 and show that T obeys the above inductive expressions. We
remark that, from the definition of R0,i , one has

R0,ia01...n = a1,2,...,i,0,i+1...n ⇒ R0,i = R01...n
pi

(3.14)

where pi is defined by equation (3.13). We start from equation (3.1) and work with S-covariant
matrices. Then, the right-hand side (rhs) is equal to (n + 1)T

(n+1)

∞01...n, while the left-hand side
reads
1

n!

∑
σ∈Sn+1

(
R01...n

σ

)−1
{
T

(n)

∞σ (1)...σ (n) −
(
Rσ (0)...σ (n)

pn

)−1
R∞σ (0)T

(n)

∞σ (1)...σ (n)R
σ (0)...σ (n)
pn

}
R01...n

σ .

(3.15)
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Now, we decompose Sn+1 with respect to Sn; any σ ∈ Sn+1 is of the form (for some
0 � i � n) µ ◦ pi with3 µ ∈ Sn and pi defined in equation (3.13). Using the covariance of
T (n), one obtains for the first part of the rhs

rhs1 := 1

n!

∑
σ∈Sn+1

(
R01...n

σ

)−1
T

(n)

∞σ (1)...σ (n)R
01...n
σ

= 1

n!

n∑
i=0

∑
µ∈Sn

(
R01...n

pi

)−1(Rpi(0)pi(1)...pi (n)
µ

)−1
T

(n)

∞µ(pi(1))...µ(pi (n))

×Rpi(0)pi(1)...pi (n)
µ R01...n

pi

= 1

n!

n∑
i=0

(
R01...n

pi

)−1

∑
µ∈Sn

T (µ)

∞pi(0)pi(1)...pi (n)

R01...n
pi

with T (µ)

∞01...n =
(
R01...n

µ

)−1
T

(n)

∞µ(1)...µ(n)R01...n
µ . Since µ(0) = 0, one has R01...n

µ = R1...n
µ . Then,

using the Sn-covariance of T (n), one obtains T (µ)

∞01...n = T
(n)

∞1...n, ∀µ, so that

rhs1 =
n∑

i=0

(
R01...n

pi

)−1
T

(n)

∞2...i,0,i+1...nR
01...n
pi

. (3.16)

Finally, to obtain equation (3.12), one remarks in the second sum of the rhs that
Rσ (0)...σ (n)

pn
R01...n

σ = R01...n
pn◦σ , due to equation (2.20).

The same calculation (done in the reverse direction) also shows that the inductive
expressions obey lemma 3.1. �

Remark 4. Note that the inductive expression proves the unicity of the solution.

Remark 5. The first terms in the series (3.12) are

T
(1)
∞1 = I− R∞1

T
(2)

∞12 = I− R∞2 + R∞2R∞1 − R21R∞1R12.

Corollary 3.4. ∀n � 0, T
(n)

∞1...n is a non-vanishing polynomial of R-matrices. It has the
following form

T
(n)

∞1...n = I +
n∑

i=1

S
(i)

∞1...n with S
(i)

∞1...n =
∑
µ∈Sn

mµMµR∞µ(1) · · ·R∞µ(i)M
−1
µ (3.17)

where Mµ are products of matrices Rab with 1 � a, b � n and mµ ∈ Z.

Proof. We prove the corollary by induction. The explicit expressions given above prove that
it is true for n = 0, 1, 2. Now, suppose equation (3.17) is true up to n. Then, equation (3.12)
shows that it is also true for n+1. Indeed, the two sums in equation (3.12) have conjugation by
R-matrices of type Mµ. Moreover, only the first sum contributes to I, and effectively leads to
a coefficient 1, while the second sum increases the number of R∞a (a = 0, 1, . . . , n) matrices
by 1. �

Remark 6. The above formula shows that T (n) is invertible (as a series) for all n.

Using the theorem 3.3, one can show the following property.

3 Strictly speaking, µ is still in Sn+1, but it obeys µ(0) = 0 so that its restriction to [1, n] defines an element of Sn.
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Property 3.5. The well-bred vertex operators T of theorem 3.3 obey Faddeev–Reshetikhin–
Takhtajan (FRT) relations:

R12T1T2 = T2T1R12 i.e. R12(k1, k2)T1(k1)T2(k2) = T2(k2)T1(k1)R12(k1, k2).

(3.18)

In other words, they generate an infinite-dimensional quantum group with the evaluated
R-matrix R12. In the following, we denote this quantum group as UR .

Proof. We use lemma 2.8 for T. c12 = T −1
1 T −1

2 R12T1T2 is central in AR such that

R12T1T2 = T2T1c12 (3.19)

with c12 being central, and due to the property 3.2, it is a constant matrix M12. To identify the
exact expression of M12, we use the result of theorem 3.3. Looking at equation (3.19) as a series
in the number of say a operators and projecting on number 0, we obtain c12 = M12 = R12.

�

Remark 7. Looking at the term linear in a, one obtains

R12
(
T

(1)

13 + T
(1)

23 − T
(1)

13 · T (1)

23

) = (
T

(1)

13 + T
(1)

23 − T
(1)

13 · T (1)

13

)
c12. (3.20)

Plugging into this equation the expressions of T (1) and c12, one recovers the Yang–Baxter
equation, which is indeed satisfied.

Property 3.6. Let T be the well-bred vertex operator of theorem 3.3. Then, one has

T †(k) = T (k)−1. (3.21)

Proof. From the lemma 2.7, one knows that T †(k)T (k) is central. This implies (using
property 3.2) that T †(k)T (k) is a constant N × N matrix M. Looking at the term without a,
one concludes that M = IN . �

Corollary 3.7. The expansion of T (k)−1 as a series in a takes the form

T −1
∞ = I +

∞∑
n=1

(−1)n

n!
a
†
n...1T̄

(n)

∞1...na1...n (3.22)

where T̄
(n)
∞1...n is defined by the following inductive expressions

T̄
(1)
∞0 = I− R0∞ (3.23)

T̄
(n+1)

∞01...n =
1

n + 1

n∑
i=0

(
R01...n

pi

)−1
T̄

(n)

∞2...i,0,i+1,..,nR
01...n
pi

− 1

(n + 1)!

∑
σ∈Sn+1

(
R01...n

pn◦σ
)−1

T̄
(n)

∞σ (1)...σ (n)Rσ(0)∞R01...n
pn◦σ . (3.24)

It obeys the corollary 3.4, with R∞µ(i) replaced by Rµ(i)∞.

Proof. A simple calculation can be made from property 2.2, theorem 3.3 and property 3.6.
�
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Property 3.8. The vertex operators T defined in theorem 3.3 induce an isomorphism between
the algebras AR and AR−1 . The isomorphism is given by

τ :


AR → AR−1

a �→ â = T −1a

a† �→ â† = a†T .

(3.25)

Proof. We first show that â and â† obey the exchange relations of AR−1 . We note that
R−1

12 = R21.

â1â2 = T −1
1 a1T

−1
2 a2 = T −1

1 T −1
2 R12a1a2 = R12T

−1
2 T −1

1 a1a2

= R12T
−1

2 T −1
1 R21a2a1 = R12T

−1
2 a2T

−1
1 a1 = R12â2â1.

One does a similar calculation with â
†
1â

†
2. In the same way, one computes

â1â
†
2 = T −1

1 a1a
†
2T2 = T −1

1 a
†
2R12a1T2 + T −1

1 δ12T2 = T −1
1 a

†
2T2a1 + δ12

= a
†
2T
−1

1 R21T2a1 + δ12 = a
†
2T2R21T

−1
1 a1 + δ12 = â

†
2R21â1 + δ12.

This shows that AR is embedded into AR−1 . Performing the same calculation starting from
AR−1 proves that AR−1 is embedded into AR . There is thus an equality of the two algebras.

�

Reduction to the finite-dimensional case. The above results can be applied to the case without
spectral parameters. We have to start with a finite-dimensional R-matrix obeying the Yang–
Baxter equation

R12R13R23 = R23R13R12 (3.26)

and a unitarity condition R12R21 = I where, for this section only, the spectral parameters are
not present. The deformed oscillator algebra is then finite dimensional, and all the properties
stated above are still valid, the proofs following the same lines, omitting the integration over
the spectral parameters.

Note however that the unitarity condition still has to be fulfilled, and this requirement
excludes for instance the (triangular) R-matrix of the finite-dimensional quantum group
Uq(sl2).

4. Application to integrable systems

Property 4.1 (Hierarchy associated with AR). Let H(n) be defined by

H(n) =
∫ ∞
−∞

dk kna†(k)a(k) ∀n = 0, 1, 2, . . . . (4.1)

H(n) forms an Abelian algebra, which defines a hierarchy for the algebra AR .
The evolution of a and a† operators under the flow H(n) is given by

eitH (n)

a(k) e−itH (n) = e−itkn

a(k) (4.2)

eitH (n)

a†(k) e−itH (n) = eitkn

a†(k). (4.3)

Proof. Direct calculation. For instance

a1H
(n) = a1k

n
2a

†
2a2 = kn

2

(
a
†
2R12a1a2 + δ12a2

)
= kn

2a
†
2R12R21a2a1 + kn

1a1 = H(n)a1 + kn
1a1

and thus [H(n), a1] = −kn
1a1. �
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Property 4.2. Any well-bred operator L is an integral of motion for the hierarchy

[L,H (n)] = 0 ∀n = 0, 1, 2, . . . . (4.4)

In particular, this is the case for the well-bred vertex operators defined in theorem 3.3, and
the quantum group UR generates an infinite-dimensional symmetry algebra for the hierarchy.

Proof. L1H
(m)
2 = km

2 L1a
†
2a2 = km

2 a
†
2R12L1a2 = km

2 a
†
2R12R21a2L1 = H

(m)
2 L1. �

Remark 8. From the example of section 6.1 (see below), which was studied in [4, 2], we
conjecture that, for each AR-hierarchy, there is a corresponding integrable system already
studied in the literature. The a† operators in the Fock space representation, in this context,
correspond to asymptotic states of the system. The correlation functions of the system are
then computed using the a† operators.

5. Fock space and evaluation representations

Associated with the deformed oscillator algebra AR comes the notion of Fock space.

Definition 5.1. The Fock space FR of the AR algebra is the module generated by the vacuum
� such that

ai(k)� = 0 ∀i = 1, . . . , N ∀k. (5.1)

Now, since one has constructed a quantum group from the AR algebra, it is natural to look at
the representations induced by the Fock space.

Property 5.2. The Fock space FR decomposes under the action of the Hamiltonians H(n) into
an infinite sum of tensor product of evaluation representations of UR

FR = ⊕∞n=0

∫
dk1 · · · dknθ(k1 � k2 � · · · � kn)Vn(k1, k2, . . . , kn) (5.2)

where θ(k1 � k2 � · · · � kn) indicates that the spectral parameters are ordered.
In particular, the representations Vn(k1, . . . , kn) are of dimension Nn, and T acts in these

spaces by right-multiplication by R.

Proof. Since the Hamiltonians H(n) form a commuting subalgebra of AR , we can consider
them as a Cartan subalgebra, and decompose FR into Cartan eigenspaces Vn(h1, h2, . . .),
where n denotes the eigenvalue under H(0) (which turns out to be still the particle number
although we are in the deformed case) and hp is the eigenvalue of H(p) (p > 0). Now, since
UR commutes with these Hamiltonians, the eigenspaces are stable under the action of UR and
thus are representations of UR .

The vectors in FR are linear combinations of monomials a†
α1

(k1) · · · a†
αm

(km)�, ∀m. On
the eigenspace Vn(h0, h1, h2, . . .), one must consider only monomials with m = n; this
provides only a finite number of terms, and the eigenspace is of finite dimension. Moreover,
the eigenvalues under H(n) being fixed, one has equations

h1 =
n∑

i=1

ki, h2 =
n∑

i=1

k2
i , . . . , hn =

n∑
i=1

kn
i

which completely fix the values of k1, . . . , kn (up to a permutation) and also of hp =∑n
i=1 k

p

i , p > n. Thus, we can replace the labelling h1, h2, . . . by k1, . . . , kn, whence the
notation Vn(k1, . . . , kn) for the representations of UR . Finally, the exchange relations among
a† allow us to reorder them in such a way that the spectral parameters are in increasing order.
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Because it is a vertex operator, the action of T on � is trivial, and since it is well-bred its
action on other states is a multiplication by R. �

Remark 9 (Hopf structure of UR). Although one cannot obtain the Hopf structure of UR

starting from AR, one can infer it from the present construction in the following way.
The ‘first’ eigenspaces are

V0(0) = C�

V1(k) = Span
(
a
†
i (k)�, i = 1, . . . , N

)
V2(k1, k2) = Span

(
a
†
j (k2)a

†
i (k1)�, k1 � k2, i, j = 1, . . . , N

)
.

Looking at the action of the well-bred vertex operators T on these spaces, one obtains

T � = � T1a
†
2� = a

†
2R12� T1a

†
2a

†
3� = a

†
2R12a

†
3R13�. (5.3)

Interpreting V2(k1, k2) as the tensor product V1(k1)⊗ V1(k2)

a
†
2a

†
3� ∼ a

†
2�⊗ a

†
3� (5.4)

we obtain4

T1a
†
2a

†
3� = a

†
2R12a

†
3R13� ∼ a

†
2R12�⊗ a

†
3R13� = (T1 ⊗ T1)

(
a
†
2�⊗ a

†
3�

)
. (5.5)

Thus, we are naturally led to the coproduct formula

	(T ) = T ⊗ T (5.6)

which is the correct formula for UR .

Remark 10. Note also that, due to the finite number of a operators in the states ofVm, the vertex
operators truncate at level m, and become polynomials in a and a† in these representations.

6. Examples

We give two examples here: one associated with an additive spectral parameter, and the other
with a multiplicative spectral parameter.

6.1. The nonlinear Schrödinger equation

The NLS equation in 1 + 1 dimensions has been widely studied. We look at it in the QISM
approach (for a review, see, for example, [5] and references therein).

It has already been shown [2, 4] that all the information on the hierarchy associated with
the NLS equation can be reconstructed starting from the algebra AR , where R is the R-matrix
of the Yangian Y (N) based on gl(N):

R(k) = 1

k + ig
(kIN ⊗ IN + igP12) P12 =

N∑
i,j=1

Eij ⊗ Eji. (6.1)

This R-matrix obey an additive Yang–Baxter equation

R12(k1 − k2)R13(k1 − k3)R23(k2 − k3) = R23(k2 − k3)R13(k1 − k3)R12(k1 − k2) (6.2)

and one shows, using P 2 = I, that R12(k)R21(−k) = I. Thus, the properties stated above
apply.

4 Care must be taken that the indices 1, 2 and 3 refer to the auxiliary spaces while the tensor product refers to AR .
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In fact, it is well known that the canonical field 
 obeying the (quantum) NLS equation

(
i∂t + ∂2

x

)

(x, t) = 2g : 
(x, t)
̄(x, t)
(x, t) : with 
(x, t) =

ϕ1(x, t)

...

ϕn(x, t)


can be reconstructed from AR [4]. The Hamiltonian is then exactly H(2), and the Yangian
Y (N) is a symmetry of the hierarchy [2, 3]. The operators a† correspond to asymptotic states
in the Fock space F .

The generators Qa
0 and Qa

1 of Y (N) in its Drinfeld presentation are built in terms of AR

in [2] (see also [3] for the gl2 case). The present approach is an alternative construction of
Y (N) in the FRT presentation. It has the advantage of giving an explicit construction for all
the generators of the Yangian, and also of giving the action of these generators (i.e. of the
integrals of motion) on the a and a† operators (i.e. the asymptotic states of the system).

6.2. The quantum group Uq(ĝl2)

Here, we take the evaluated R-matrix of the centreless affine gl2 quantum algebra. Following
the usual notation, the spectral parameter is denoted as z. The R-matrix reads

R(z) =



1 0 0 0

0
q(1− z2)

1− q2z2

z(1− q2)

1− q2z2
0

0
z(1− q2)

1− q2z2

q(1− z2)

1− q2z2
0

0 0 0 1

 . (6.3)

It is defined here up to a normalization factor ρ such that the unitarity condition
R12(z1/z2)R21(z2/z1) = 1 is preserved, i.e.

ρ(z)ρ

(
1

z

)
= 1. (6.4)

The R-matrix obeys a multiplicative Yang–Baxter equation

R12(z1/z2)R13(z1/z3)R23(z2/z3) = R23(z2/z3)R13(z1/z3)R12(z1/z2) (6.5)

and once again one can apply the above properties. Note however that we are forced to take a
vanishing central charge, so that the algebra Uq(ĝl2) is defined by the relation

R12(z1/z2)T1(z1)T2(z2) = T2(z2)T1(z1)R12(z1/z2). (6.6)

The Hamiltonian H(2) should correspond to the Hamiltonian of the sine-Gordon model.

6.3. The elliptic quantum group Aq,p(ĝl2)

The elliptic quantum group Aq,p(ĝl2)c has defining relations

R12(z1/z2; q, p)T1(z1)T2(z2) = T2(z2)T1(z1)R
∗
12(z1/z2; q, p) (6.7)

where R∗12(z; q, p) = R12(z; q, pq−2c). Note that R12 obeys the unitarity condition. Thus, in
the centreless case, one has R∗ = R, and the above procedure can be applied. One starts with
the evaluated R-matrix of Aq,p(ĝl2)c=0 and constructs the corresponding ZF algebra.

In this way, one obtains a well-bred vertex operator that realizes Aq,p(ĝl2)c=0, and this
latter algebra is a symmetry of the hierarchy associated with the ZF algebra. In particular, the
Hamiltonian H(2) should be related to the XYZ model and, in this framework, we naturally
obtain Aq,p(ĝl2)c=0 as a symmetry of this model.
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7. Conclusion and perspectives

Starting with any R-matrix with spectral parameters, obeying the Yang–Baxter equation and
a unitarity condition, we have constructed the corresponding quantum group UR in terms
of a deformed oscillator algebra AR . The realization we present is an infinite series, the
expansion being given in the number of creation operators. Up to a normalization constant,
the construction is unique. These ‘well-bred vertex operators’ act naturally on AR . As a
consequence, they are integrals of motion of the integrable hierarchy naturally associated
with AR .

Taking as an example the R-matrix of Y (N), the Yangian based on gl(N), using this
construction we recover the NLS equation and its Y (N) symmetry. It is thus very natural to
believe that the other integrable systems known in the literature can be treated with the present
approach.

Of course, a comparison has to be made between the vertex operators constructed in this
paper, and the vertex operators of quantum affine algebras known in the literature (e.g. [6]).
Note, however, that our construction can be done for any infinite quantum group, provided its
evaluated R-matrix obeys the unitarity condition.

As a generalization, it is natural to ask whether such an approach can be extended to the
case of (elliptic) quantum groups with a non-vanishing central charge; this seems to be very
much the case [7]. If such a generalization can be done, it would then be possible to look at
(off-shell) correlation functions for the underlying integrable systems. Moreover, this could
give a pertinent insight in the research of vertex operators, as they are looked for when starting
with the canonical fields of the integrable system [8].
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